Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Optical‐resolution photoacoustic microscopy (OR‐PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR‐PAM, it is often necessary to make a trade‐off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual‐point‐based deconvolution algorithm for OR‐PAM (VP‐PAM). VP‐PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single‐line target. In addition, it has outperformed Richardson‐Lucy deconvolution with 15 iterations in both structural similarity index and peak signal‐to‐noise ratio on an OR‐PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep‐penetrating OR‐PAM system with compromised lateral resolution, VP‐PAM yielded enhanced resolution and contrast with better‐resolved microvessels.more » « less
- 
            Andrews, D.; Galvez, EJ; Rubinsztein-Dunlop, H. (Ed.)There is interest in using photon entanglement in biomedical applications. In one application, polarization-entangled photons pass through brain tissue. The effect of the brain tissue on the photon entanglement is measured via the decoherence that is imparted on the entangled state. Our current method to obtain a measure of the decoherence involves quantum state tomography, where a minimum of 16 measurements are used in conjunction with tomographic optimization to obtain the density matrix representing the state of the photons. In this work we report on a method to avoid tomographic optimization on behalf of a direct measurement of the elements of the density matrix. We make preliminary comparisons between the two methods.more » « less
- 
            Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
